The Royal Society
Browse

Supplementary material from "Guided droplet transport on synthetic slippery surfaces inspired by a pitcher plant"

Posted on 2019-08-21 - 06:16
We show how anisotropic, grooved features facilitate the trapping and directed transport of droplets on lubricated, liquid-shedding surfaces. Capillary action pins droplets to topographic surface features, enabling transport along the feature while inhibiting motion across (or detachment from) the feature. We demonstrate the robustness of this capillary-based mechanism for directed droplet transport on slippery surfaces by combining experiments on synthetic, lubricant-infused surfaces with observations on the natural trapping surface of a carnivorous pitcher plant. Controlling liquid navigation on synthetic surfaces promises to unlock significant potential in droplet-based technologies. Our observations also offer novel insight into the evolution of the Nepenthes pitcher plant, indicating that the ‘pitfall’ trapping mechanism is enhanced by the lubricant-infused, macroscopic grooves on the slippery peristome surface, which guide prey into the trap in a way that is more tightly controlled than previously considered.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?