The Royal Society
Browse

Supplementary material from "4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement"

Version 2 2020-01-17, 08:16
Version 1 2019-12-24, 16:20
Posted on 2020-01-17 - 08:16
We developed biomimetic hygro-responsive composite polymer scales inspired by the reversible shape-changes of Bhutan pine (Pinus wallichiana) cone seed scales. The synthetic kinematic response is made possible through novel four-dimensional (4D) printing techniques with anisotropic material use, namely copolymers with embedded cellulose fibrils and ABS polymer. Multi-phase motion like the subsequent transversal and longitudinal bending deformation during desiccation of a natural pinecone scale can be structurally programmed into such printed hygromorphs. Both the natural concept generator (Bhutan pinecone scale) and the biomimetic technical structure (4D printed scale) were comparatively investigated as to their displacement and strain over time via three-dimensional digital image correlation methods. Our bioinspired prototypes can be the basis for tailored autonomous and self-sufficient flap and scale structures performing complex consecutive motions for technical applications, e.g. in architecture and soft robotics.This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 3)’

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences

AUTHORS (7)

David Correa
Simon Poppinga
Max D. Mylo
Anna S. Westermeier
Bernd Bruchmann
Achim Menges
Thomas Speck
need help?