The Royal Society
Browse

Supplementary material from "Formation and loss of metastable brucite: does Fe(II)-bearing brucite support microbial activity in serpentinizing ecosystems?"

Posted on 2019-11-26 - 11:02
Ultramafic rocks undergo successive stages of hydration and oxidation during water/rock interaction, giving rise to secondary minerals such as brucite, serpentine, magnetite and the production of H2(g). Ferroan brucite (MgxFe(1 - x)2+(OH)2) often forms under low water/rock ratios early during the ‘serpentinization’ process. The formation of ferroan brucite sequesters Fe(II) and suppresses the production of H2, thereby limiting the flux of reductants suitable for sustaining microbial metabolism. Yet ferroan brucite is a relatively soluble mineral ‘reservoir’ for reactive Fe(II). Brucite is often metastable and can be lost at later stages of peridotite hydration when there is a significant increase in the water/rock ratio or the activity of SiO2 or CO2. The Fe(OH)2 component of brucite has the thermodynamic potential to reduce most aqueous oxidants. Therefore, ferroan brucite may reduce water and/or dissolved carbon, nitrogen and sulfur species, while the Fe(II) is converted into more stable secondary minerals such as Fe(II/III)-oxides and hydroxides (e.g. green-rust, magnetite, iowaite and pyroaurite) and ferric serpentine. The reactivity of ferroan brucite, and the associated rate of Fe solubilization and oxidation in subsurface fluids, could be a key regulator on the rate of electron transfer from serpentinites to the rock-hosted biosphere. Aqueous alteration of ferroan brucite may significantly modulate the H2 activity in fluids circulating within partially-serpentinized rocks, and buffer H2 as it is lost by advection or in situ consumption by a hydrogenotrophic microbial community. Moreover, there may be microbial organisms that specifically colonize and use ferroan brucite as an electron donor for their metabolism. The energy fluxes sustained by localized brucite oxidation may often be sufficiently large to sustain abundant microbial communities; water/rock reaction zones where brucite is consumed could serve as environments to search for extant or fossil serpentinite-hosted life.This article is part of the theme issue ‘Serpentinite in the Earth System’.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?