The Royal Society
Browse

Supplementary material from "Collective information processing in human phase separation"

Version 2 2020-08-10, 10:26
Version 1 2020-06-17, 17:05
Posted on 2020-08-10 - 10:26
In our digital societies, individuals massively interact through digital interfaces whose impact on collective dynamics can be important. In particular, the combination of social media filters and recommender systems can lead to the emergence of polarized and fragmented groups. In some social contexts, such segregation processes of human groups have been shown to share similarities with phase separation phenomena in physics. Here, we study the impact of information filtering on collective segregation behaviour of human groups. We report a series of experiments where groups of 22 subjects have to perform a collective segregation task that mimics the tendency of individuals to bond with other similar individuals. More precisely, the participants are each assigned a colour (red or blue) unknown to them, and have to regroup with other subjects sharing the same colour. To assist them, they are equipped with an artificial sensory device capable of detecting the majority colour in their ‘environment’ (defined as their k nearest neighbours, unbeknownst to them), for which we control the perception range, k = 1, 3, 5, 7, 9, 11, 13. We study the separation dynamics (emergence of unicolour groups) and the properties of the final state, and show that the value of k controls the quality of the segregation, although the subjects are totally unaware of the precise definition of the ‘environment’. We also find that there is a perception range k = 7 above which the ability of the group to segregate does not improve. We introduce a model that precisely describes the random motion of a group of pedestrians in a confined space, and which faithfully reproduces and allows interpretation of the results of the segregation experiments. Finally, we discuss the strong and precise analogy between our experiment and the phase separation of two immiscible materials at very low temperature.This article is part of the theme issue ‘Multi-scale analysis and modelling of collective migration in biological systems’.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Philosophical Transactions of the Royal Society B: Biological Sciences

AUTHORS (9)

Bertrand Jayles
Ramón Escobedo
Roberto Pasqua
Christophe Zanon
Adrien Blanchet
Matthieu Roy
Gilles Tredan
Guy Theraulaz
Clément Sire
need help?