Supplementary material from "Cilia drive developmental plasticity and are essential for efficient prey detection in predatory nematodes"
Posted on 2019-09-21 - 12:41
Cilia are complex organelles involved in a broad array of functions in eukaryotic organisms. Nematodes employ cilia for environmental sensing, which shapes developmental decisions and influences morphologically plastic traits and adaptive behaviours. Here, we assess the role of cilia in the nematode Pristionchus pacificus, and determine their importance in regulating the developmentally plastic mouth-form decision in addition to predatory feeding and self-recognition behaviours, all of which are not present in Caenorhabditis elegans. An analysis of a multitude of cilia-related mutants including representatives of the six protein subcomplexes required in intraflagellar transport (IFT) plus the regulatory factor X transcription factor daf-19 revealed that cilia are essential for processing the external cues influencing the mouth-form decision and for the efficient detection of prey. Surprisingly, we observed that loss-of-function mutations in the different IFT components resulted in contrasting mouth-form phenotypes and different degrees of predation deficiencies. This observation supports the idea that perturbing different IFT subcomplexes has different effects on signalling downstream of the cilium. Finally, self-recognition was maintained in the cilia deficient mutants tested, indicating that the mechanisms triggering self-recognition in P. pacificus may not require the presence of fully functional cilia.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Moreno, Eduardo; Lightfoot, James W.; Lenuzzi, Maša; Sommer, Ralf J. (2019). Supplementary material from "Cilia drive developmental plasticity and are essential for efficient prey detection in predatory nematodes". The Royal Society. Collection. https://doi.org/10.6084/m9.figshare.c.4674251.v1