The Royal Society
Browse

Supplementary material from "CO2 diffusion in tobacco: a link between mesophyll conductance and leaf anatomy"

Posted on 2021-01-16 - 05:52
The partial pressure of CO2 at the sites of carboxylation within chloroplasts depends on the conductance to CO2 diffusion from intercellular airspace to the sites of carboxylation, termed mesophyll conductance (gm). We investigated how gm varies with leaf age and through a tobacco (Nicotiana tabacum) canopy by combining gas exchange and carbon isotope measurements using tuneable diode laser spectroscopy. We combined these measurements with the anatomical characterization of leaves. CO2 assimilation rate, A, and gm decreased as leaves aged and moved lower in the canopy and were linearly correlated. This was accompanied by large anatomical changes including an increase in leaf thickness. Chloroplast surface area exposed to the intercellular airspace per unit leaf area (Sc) also decreased lower in the canopy. Older leaves had thicker mesophyll cell walls and gm was inversely proportional to cell wall thickness. We conclude that reduced gm of older leaves lower in the canopy was associated with a reduction in Sc and a thickening of mesophyll cell walls.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Interface Focus

AUTHORS (3)

Victoria C. Clarke
Florence R. Danila
Susanne von Caemmerer

CATEGORIES

need help?