The Royal Society
Browse

Supplementary material from "A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory"

Version 2 2020-03-10, 13:38
Version 1 2020-02-17, 11:00
Posted on 2020-03-10 - 13:38
The main goal of the current work is to present a grain boundary model based on the mismatch between adjacent grains in a geometrically nonlinear crystal viscoplasticity framework including the effect of the dislocation density tensor. To this end, the geometrically nonlinear crystal viscoplasticity theory by Alipour et al. (Alipour A et al. 2019 Int. J. Plast. 118, 17–35. (doi:10.1016/j.ijplas.2019.01.009)) is extended by a more complex free energy and a geometrical transmissibility parameter is used to evaluate the dislocation transmission at the grain boundaries which includes the orientations of slip directions and slip plane normals. Then, the grain boundary strength is evaluated based on the misorientation between neighbouring grains using the transmissibility parameter. In some examples, the effect of mismatch in adjacent grains on the grain boundary strength, the dislocation transmission at the grain boundaries and the Hall–Petch slope is discussed by a comparison of two-dimensional random-oriented polycrystals and textured polycrystals under shear deformation.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?