Supplementary material from "A Feasibility Study on Non-Invasive and Non-Contact Jugular Venous Pulse Measurement Using 60 GHz FMCW Radar."
Version 2 2025-06-13, 09:02Version 2 2025-06-13, 09:02
Version 1 2025-06-10, 15:54Version 1 2025-06-10, 15:54
Posted on 2025-06-13 - 09:02
The Jugular Venous Pulse (JVP) reflects right atrial pressure and provides diagnostic insight into cardiovascular and pulmonary health. However, reliable assessment remains difficult due to neck adiposity, anatomical variability, and suboptimal positioning. Although central venous catheterization is the gold standard, its invasive nature restricts routine or long-term use. This study introduces a non-
invasive method for JVP estimation using a 60 GHz frequency-modulated continuous wave (FMCW) radar. The system captures venous pulsations at the skin surface and applies eigenbeamforming to enhance signal-to-noise ratio and pulse clarity. Radar parameters were optimized for signal fidelity and validated through morphological comparison with simultaneously recorded photoplethysmography (PPG) signals. Additionally, we compared radar- derived JVP signals with previously recorded catheterization data from a patient with early-stage heart failure to assess clinical relevance. Signal localization was successfully achieved within a direction-of-arrival (DoA) range of −20◦ to +20◦, demonstrating the radar’s precision. While the selected parameters consistently yielded good performance in our setup, individual anatomical differences may require subject-specific calibration.
These findings support the potential of 60 GHz FMCW radar for contactless JVP monitoring, with promising implications for early detection and remote management of heart failure.
CITE THIS COLLECTION
DataCite
DataCiteDataCite
No result found
Das, Shatabdi; Afsharan, Hadi; Dwivedi, Girish; Arrow, Coen; Kavehei, Omid (2025). Supplementary material from "A Feasibility Study on Non-Invasive and Non-Contact Jugular Venous Pulse Measurement Using 60 GHz FMCW Radar.". The Royal Society. Collection. https://doi.org/10.6084/m9.figshare.c.7867631.v2