The Royal Society
Browse

Supplementary material from "A Fano-based acoustic metamaterial for ultra-broadband sound barriers"

Posted on 2021-04-19 - 07:23
Ultra-broadband sound reduction schemes covering living and working noise spectra are of high scientific and industrial significance. Here, we report, both theoretically and experimentally, on an ultra-broadband acoustic barrier assembled from space-coiling metamaterials (SCMs) supporting two Fano resonances. Moreover, acoustic hyper-damping is introduced by integrating additional thin viscous foam layers in the SCMs for optimizing the sound reduction performance. A simplified model is developed to study sound transmission behaviour of the SCMs under a normal incidence, which sets forth the basis to understand the working mechanism. An acoustic barrier with 220 mm thickness is then manufactured and tested to exhibit ultra-broadband transmission loss overall above 10 dB across the range 0.44–3.85 kHz, covering completely nine third-octave bands. In addition, unconventional broadband absorption in the dampened barrier (65%) is experimentally observed as well. We believe this work paves the way for realizing effective broadband sound insulation, absorption and sound wave controlling devices with efficient ventilation.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?