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Abstract 

In this study, the Pennes and Cattaneo-Vernotte bioheat transfer equations in the presence of fractal spatial dimensions are 
derived based on the product-like fractal geometry. This approach was introduced recently, by Li and Ostoja-Starzewski, 
in order to explore dynamical properties of anisotropic media. The theory is characterized by a modified gradient operator 
which depends on two parameters: R which represents the radius of the tumor, and 0R which represents the radius of the 
spherical living tissue. Both the steady and unsteady states for each fractal bioheat equations were obtained and their 
implications on living cells in the presence of a large tumor growth were analyzed. Assuming a specific heating/cooling 
by a constant heat flux equivalent to the metabolic heat generation in the tissue, it was observed that the solutions of the 
fractal bioheat equations are robustly affected by fractal dimensions, the radius of the tumor growth and the dimension of 
the living cell tissue. The ranges of both the fractal dimension and temperature were obtained, analyzed, and compared 
with recent studies. This study confirms the importance of fractals in medicine.   
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1. Introduction 
Kinetic theory is one of the most important fields in statistical physics due to its large implications in the 

understanding of various complex phenomena such as radiative transfer, polymer flows, quantum 

hydrodynamics, diffusion processes, cellular mechanics, and phase transitions [1]. Its formalism can be 

developed for both classical and quantum dynamical systems. Recently, the concept of kinetic theory has 

been extended to fractal systems due to the importance of fractals in nearly all fields of sciences and 

engineering [2,3]. Fractal kinetic theory has been explored in surface chemical reactions [4], spin dynamics 

[5], adsorption on mesoporous carbons [6], reaction kinetics of proteins and enzymes [7], diffusion-limited 

reactions [8-10], non-extensive thermodynamics [11], rock fractures in fluid flows [12], colloid science [13], 

fluids dynamics simulations [14], porous media [15], among others. More generally, fractals have imperative 

implications in materials sciences [16], fluids flows [17,18], elastic and continuum media [19], 

electromagnetic theory [20,21], quantum mechanics [22-26], astrophysics [27-36], fluid mechanics and 

nanofluid [37,38], transport in complex porous media [39], materials sciences [40], heat transfer [41], etc.  

 

Mathematically, fractals are the generic models generated by scaling equations which emerge in chaotic 

dynamical systems. Although their complex and intricate structures, fractals are also artistic and they are 

defined by a recursive process characterized by self-similarities and fractal dimensions. Fractals are very 

important in biological systems where shapes are very important at mesoscopic scales, e.g. diffusion of gas 

through the fractal landscape of the lung and quantification of oocyte cytoplasm morphology. Fractals emerge 

also in neurosciences where they play a leading role in the scaling analysis of cerebral hemodynamics and the 

modeling of human gait. Moreover, they arise in tumors cells and they are used in the analysis of vascular 

network pattern in human diseases and canine trichoblastoma (see [42] for a good review). It is notable that 

our circulatory blood system, brains, arteries, veins, rhythms of heartbeats, walking strides, biological 

changes of aging, bronchioles and our lungs are characterized by fractals patterns [43]. The bronchial tubes in 

our lung and kidneys are characterized by one fractal dimension for the first seven generations of branching 
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[44]. Besides, fractal geometry is at the leading edge of research in understanding the function of our brains 

[45,46].  

 

In medical research fractals are largely involved in the understanding of several biological aspects such as the 

dynamics and the propagation of bacteria and virus on the surfaces of our bodies [47]. As for the AIDS virus, 

it has been observed that their dynamics in the human body may be successfully modeled by means of fractals 

and hence provides a natural explanation to the long-standing puzzle encountering the abnormally long 

incubation stage of the AIDS virus [48]. Moreover, fractals have been used in the detection of cancer cells 

and cystic fibrosis in human bodies [49]. Fractal geometry has been applied in the therapeutic of breakable 

bone fractures [50], in modeling of lung morphogenesis [51], in physiology [52], in vascular biology [53], in 

microbiology [54] among several domains in medicine including pathology, oncology, and radiographic 

diagnostic [55-63].  

 

However, in most biological systems and biological materials, anisotropy is an essential feature [64]. 

Anisotropy has important implications in anisotropic optical biological network [65,66], biological tissues 

[67], DNA-mediated anisotropic mechanical reinforcement of a virus [68], measurement of bone texture 

radiographs [69], post-menopausal osteoporosis and trabecular bone radiographic images [70] and in 

disruption of tissue architecture/cancer [71]. Although isotropic and anisotropic fractals were largely explored 

in biology and medicine, the formulation of kinetic theory in anisotropic biology characterized by fractal 

dimensions is still not well elaborated in literature. Modelling complex biological systems by means of the 

conventional mathematical kinetic theory was done in literature [72] yet the standard analysis is unable to 

portray a variety of fractal geometrical structures emerging in biology and medicine since biological systems 

are at the present time lengthily understood as being inherently fractal. This is the main reason why nowadays 

there is an interest in fractal pharmacokinetics [73,74].  

 

In the present study, we would like to construct an anisotropic kinetic theory in fractal dimensions staring 

from a completely dissimilar fractal perspective known by the concept of "product-like fractal geometry" 

which was introduced by Li and Ostoja-Starzewski in [75] and entitled LOSA (Li and Ostoja-Starzewski 

approach). This approach describes fruitfully the nonlinear dynamics and the physics in anisotropic fractal-

dimensional media [76-82] and has a series of motivating implications in various fields of sciences and 

engineering [83-86]. Given that LOSA is productively used in anisotropic media, it will be of interest to 

explore its implications in kinetic biology. It is very important to understand the role of heat and 

thermodynamics in biological systems, e.g. energy flow [87], nonequilibrium thermodynamics of living 

organisms such as mitochondria and energy transduction in the mitochondrion [88,89], thermodynamics of 

growth and microorganisms [90], bioengineering thermodynamics of biological cells [91], etc. Cells in our 

body are well-organized and their corresponding entropy is very low. However, to maintain this order, energy 

is lost to the environment or transformed. This process results in an increase in entropy in the 

cell's/organism's surroundings [92].  

 

Given the importance of these topics, it will be of interest to describe the fractal transfer of temperature or 

internal pressure in tumor growth. The study of temperature or internal pressure in tumor growth is significant 

for hyperthermia or thermal ablation which uses thermal energy deposited to exterminate cancer cells (i.e., 

coagulation necrosis) with minimal injury to normal tissue [93-96]. Although the mathematical models 
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discussed in literature which are based on fractals geometry have proved to be practical to imitate the growth 

of tumor cell number over time [96-98], the implications of a fractal kinetic theory in tumor growth is still not 

well-completed. This will be the main focus of the present study. As mentioned previously, the solutions of 

fractal bio-heat transfer problems are important in biomedical applications such as the ones for thermo-

therapeutic treatment.  

 

This study is organized as follows: in Sec. 2, we review the basic setups of LOSA and then, we formulate the 

fluid kinetic equations where we introduce the fractal advection-diffusion equation which will be recognized 

as the fractal Pennes bioheat transfer equation; in Sec. 3, we discuss the steady-state solution and its main 

implications in cell tissues in the presence of a tumor growth; in Sec. 4, the time-dependent solutions are 

derived and discussed; and finally, conclusions are given in Sec. 5.  

 

2. LOSA, Fractal Kinetic Theory and Fractal Pennes Bioheat Transfer Equation  
Before we introduce the fractal Pennes bioheat transfer equation, we briefly review the basic formalism of 

LOSA. This new fractal approach is, in fact, based on simple geometrical arguments: given a parallelepiped 

of lengths 1 2 3, ,x x x , mass 1 2 3( , , )m m x x x  and density 1 2 3( , , )x x x   on a fractal set W having dimension 

1 2 3D      with 0 1k  . Li and Ostoja-Starzewski set up the following conceivable characterization 

of its mass distribution through a product measure: 3
1 ( ), 1,2,3k kkVm d x k    where 

1( ) : ( , )k
k k k k kd x c x dx  is the length measurement with 1( )

1 0( , ) (( ) )k
k k k k k k

kc x l x l     , 0 k kx l   

obtained through the modified Riemann-Liouville fractional integral [86]. kl  is the length along axis kx  and 

0kl  is a characteristic length. In general, ( )3
13 1

i
ic c  is the volume coefficient of the parallelepiped and 

(1) 1 1
1 0( ) ( ( ))c l l x    .  

 

In this context, the operators gradient and Laplacian are generalized to their fractal counterparts as follows: 
( ) 1
1( )kD

k kc     and D D D
k k k    .  and  are the conventional gradient and Laplacian operators 

respectively. It is notable that both the Stokes theorem 
1dA lfdS dl   n f and the divergence theorem 

D
D dV SdV dS    f f n  still hold. Here D D

k k  e , ke are base vectors, ( )3
1 1

k
kDdV c dV  is the infinitesimal 

fractal volume element, ( )k
i jddS dx dx such that ( ) ( )

22
k k

ddS c dS  where ( ) ( ) ( ) ( )
32 1 1 1 , , ,k i j kc c c c c i j i j k    . In 

this framework, ( )k
i jd     is the fractal dimension of the surface ( )k

dS along the diagonals i jx x  in 
( )k
dS . It is noteworthy that LOSA still holds in radial coordinates since one can define the fractal derivative 

(or the fractal gradient) operator by 10: ( ) ,0
R

r rr R r r R  
         with R being the length along radial 

axis r and 0R is a typical length. One of the main advantages of LOSA is its association with conventional 

analysis and the decoupling of coordinate variables through coefficients 1c , 2c  and 3c  which overpoweringly 

simplifies the Gauss theorem. 

 

Our starting point is basically the Hamiltonian dynamics for N identical point particles. The Hamiltonian of a 

particle of mass m located at position ir  at time t takes the form: 
 

                                                                2

1

1
( )

2

N

i i i j
i i j

H V U
m  

    p r r r ,                                          (1) 

 
Here V is the potential, p is the momentum of the body and ( )i jU r r is the potential energy due to the two-

body interactions between particles. We assume that the Hamiltonian contains an external force DV F  

acting equally on all particles. The associated Hamilton's equations of the system are: D
i i H p  and 
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i iH  r p . Here "dot" represents the derivative with respect to time. We recall that, in this study, we have 

considered only spatial fractal dimensions and therefore the fractal gradient operator acts only in the space of 

generalized coordinates.  

 

Remark 2.1: It is well-known that in classical mechanics, the velocity of a particle can be specified either in 

terms of Cartesian coordinates or in terms of generalized coordinates. In Cartesian coordinates, the velocity 

of the body is given by i iv x  . However, for 1 2 3( , , , )i ix x q q q t , it is easy to verify that: 
3

1( )D
ki i k i k iv x x q x      where ( ) 1 ( ) 1

1 1: ( ) ( )D k k
k k kc c q        Using the fact that a mixed second-order 

partial derivative is independent of the order of the derivatives and that 0i jx q   , we find: 
 

                          D D D Di i k
k i k k i k k i k k i

j j j j j jk k k k

v x q
x q x q x q x

q q q q q q

     
                

   
  

     
, 

                                                                  D D Dk
k i k i ij j i

jk k

q
x x x

q



     

 



. 

 
This states that in LOSA, the Cartesian velocity is connected to the generalized velocity in a similar manner 

as the Cartesian coordinate is related to the generalized coordinate [99]. 

 

Let ( , , )i if tr p be a normalized classical distribution function over the 6N dimensional phase space that 

represents the probability of finding a particle of mass m located at position ir at time t . This function is 

assumed to hold at nonequilibrium state. The fractal continuity equation/Liouville equation of the probability 

distribution is given by: 
 

                                                                                     , 0
D

f
H f

t


 


,                                                       (2) 

where  

                                                                          , D D
i iD

i i

H f
H f f H

p

 
   

 p
.                                          (3) 

 
Several well-known partial differential equations may be obtained subsequently. In particular, if  is the 

density of the body moving with vector velocity ( , , )u v wu u  within the elementary volume dV and assumed 

to be of elementary mass dm dxdydz dV   , then the following fractal continuity equation holds 

accordingly [84]: 

                                                                               0D

D

D

Dt

      
 

 u ,                                                      (4) 

 
where  D

Dt t




  u  is the fractal material derivative operator and 31 2D

x y zu v w      u . 

 

If we denote by ( , , ) ( , , )u v w
x y z x y z

a a a   
   a a a  the vector acceleration of the body subject to the body force 

( , , )x y zf f ff f  acting on the body, then the following fractal momentum and energy equations hold 

respectively: 

                                                             , 1,2,3
j i i

i j ij ji i

u
u u f j

t
    


   


  ,                                   (5) 
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2 2

, 1, 2,3
2 2

i i
i j ij j ji i

v v
u u u f j

t
    

   
             

  ,                          (6) 

 
where ij is the stress-tensor given by: 

                              2
, 1,2,3

3
j i i

ij ij i j i ijj i ip u u u j
               

 
   ,                       (7) 

 
  and  are respectively the bulk and dynamic viscosities, p  is the usual thermodynamic pressure and ij is 

the Kronecker delta. Obviously, a linear viscous fluid equation is introduced in equation (7).  

 

If we denote by h  the enthalpy of the system which is defined by h e p   where e is the internal energy, 

then using equations (5) and (6), it is easy to verify that the fractal evolution of the enthalpy is given by: 
 

                                                ( ) , 1, 2,3ji i
i ji i ii j ii

Dh DP
q u P u j

Dt Dt

 
            

   
   .                 (8) 

 
Making use of the well-known thermodynamic relations: 
 

                                                                             
2

P
v

T

T d
de c dT p

 
 

 
   

 
,                                            (9)

                                                                               1p P
dp

dh c dT T 


   ,                                               (10) 

where vc and pc are respectively the constant volume and pressure heat capacities, (1 )( )P pT      and 

(1 )( )T Tp     are respectively the relative changes in density at constant pressure and temperature, it is 

easy to verify that the following partial differential equations hold: 
 

                                     ( ) , 1,2,3ji i
p i ji i P ii j ii

DT DP
c q u T P u j

Dt Dt

 
             

   
   ,             (11)                 

                                                    , 1, 2,3P i
v i i ji j i ii

T

TDT
c q u p u j

Dt


 


 
      

 
   ,                   (12) 

                                     ( ) ( ) ( ) , 1, 2,3ji i i
i i ji i ii i j ii

DP
h u h q u P u j

t Dt

  
             

    ,     (13)                                 

                     ( ) ( ) ( ) , 1,2,3ji i i
p i i ji i P ii i j ii

DP
c T u T q u T P u j

t Dt

  
                  

    ,   (14)  

where ( ) i
i ii

q k T
    is the heat flux [100,101], k is a proportionality constant, T is the absolute 

temperature and  

                                             
2 2 2 1

0 0

0

1
( )

i i
i iii

i i i ii i
i i i i i

l l
q k T T

l x l l x

 





 
   

          
   ,          (15) 

where 
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11 P

i i i
p p

T
T h p

c c





     .                                            (16) 

In order, at the end, to derive the fractal reaction-diffusion equation for the case of an incompressible fluid 

flow assumed to have a constant density and insignificant pressure, we simply substitute (16) into equation 

(12) and we use equation (15) which gives at the end: 

                              
2 2 2 1

0 0

0

1i i
i iii

i i i ii
i i i i i

l lT
T k T T

t l x l l x

 
 


 

                  
   u .           (17) 

All the previous partial differential equations are reduced to their standard forms for 1i  . Equation (17) 

may be interpreted as a scalar form of the fractal bioheat equation with one single variable which will allow 

us to describe the heat transport in anisotropic materials. This equation generalizes the bioheat equation 

introduced by Pennes which describes the blood flow in the human body tissues depending on the relative 

local tissues temperature. The temperature difference between the blood and tissue is taken as a confirmation 

of its role to eliminate or discharge heat [102,103].  

By taking into account the metabolic heat generation in the tissue mq and the contribution of the blood flow to 

the local tissue temperature distribution Bq , we can use equation (17) to generalize the Pennes bioheat 

transfer equation to its fractal counterpart: 

                                
2 2 2 1

0 0

0

1i i
t i ii

t i i t i t B m
i i i i i

T l l
C k T T q q

t l x l l x

 



                    
   .       (18) 

Here C is the tissue blood specific heat,  the tissue density and tk the tissue thermal conductivity. If one 

assumes that both the artery and vein maintain a constant temperature when they pass through the tissue 

region, then the volumetric heat generation rate is given by ( )B B B B tq C T T   where  is the blood 

perfusion rate, B is the blood density, BC is the blood specific heat and BT is the blood vessel temperature 

which is assumed to be a constant due to a self-regulation of metabolism. Equation (18) is a partial 

differential equation for the tissue temperature in fractal dimensions and it can be used under specific and 

appropriate initial and boundary conditions to derive the transient and steady-state temperature field in the 

tissue. In this aspect, it should be noted that the temperature of the arterial blood is assumed unaffected in 

Pennes model when it travels from the heart to the capillary bed, yet, a more realistic model should take into 

consideration the temperature discrepancy along the artery and the heat evoked by the countercurrent vein 

[104]. The effects of temperature as a critical variable in cancer and experimental immunology are still 

infrequently considered, yet, some studies prove its importance in the regulation of the immune response and 

dynamics modulation of the tumor microenvironment [105,106]. It is notable that the fractional version of the 

Pennes bioheat transfer equation which is obtained by replacing the first-time derivative with a derivative of 

arbitrary positive real order  was discussed in literature through dissimilar arguments [107,108].  

In the next section, we will analyze the solution of equation (18) and we will discuss its implications in tumor 

growth. In fact, the solutions of the conventional bioheat equation were discussed largely in literature and 

their properties are very useful during thermal therapy [109-111]. We expect that the fractal solutions will 
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give rise to some new insights in tumor growth dynamics. In general, one can neglect the metabolic heat 

generation in the tissue since it is expected to be much slighter than the power density released during 

hyperthermia treatment [112-114]. But this will not affect the solution of the fractal Pennes bioheat transfer 

equation. 

3. Analytical Solution of the Steady-State Fractal Pennes Bioheat Transfer Equation  
In order to model the steady-state cell’s metabolism and blood perfusion fractal effects on temperature 

distribution in human bodies, we write equation (18) in one-dimensional spherical coordinates system (axially 

symmetric system for simplicity) as: 
 

                                              
2 22

2
0

3 1
( ) 0t t

B B t m
t

d T dT R r
C T T q

r R dr k Rdr


 


  

       
.                       (19) 

 

We assume the following boundary conditions known as of 2nd-kind ( ) 0dT

dr
t r R  and 

0( )t r t mk T r R R q     which represents heating/cooling by a constant heat flux comparable to the metabolic 

heat generation in the tissue [109,115]. Here 0R is the radius of the spherical living tissue and R is a 

characteristic length and may represent the radius of the tumor. In fact, this boundary condition is one of the 

three types of conditions used on the surface of biological tissue. The further boundary conditions are the 1st-

kind which represents the heating/cooling at a constant temperature and the 3rd-kind which represents the 

heating/cooling by convective heat transfer, i.e. heat exchange between the tissue surface and fluid at a stable 

temperature. In general, all kinds of boundary conditions may be used to study bioheat transfer in various 

thermal therapies since they offer information on temperature distribution in biological tissues. For 

convenience, we introduce the following quantities: X R r  , 2 2
0( )B B m tA C T q R k   , 2 2

0B tB C R k   

and  tY A BT  which simplify equation (19) to: 
 

                                                                      
2

2 2
2

3
0

d Y dY
BX Y

X dXdX
 

   .                                           (20) 

 
The solution of this differential equation is: 
 

                                                 
2

2
1 1 1 2 1 1

2 2

( )
B B

Y X X c I X c I X


 

  



  

    
             

,                         (21) 

where 1 2, ,...c c are constants of integrations and ( )nI x are the modified Bessel function of the 1st-kind. Because 

of the asymptotic expansions of ( )nI x  at 0x  which give in our case: 

                   

 
 

1 1 1 1 1 1
2 2 21 2 42

1 1
2

2 2
O

1 1 1 1
2

2 2

B B B
I X X X X

  
  




   

 

   




 
    
                              

,      (22) 

                    

 
 

1 1 31 1 1
2 2 21 2 42

1 1
2

2 2
O

3 1 3 1
3 2

2 2

B B B
I X X X X

  
  




   

 

     


 

 
    
                              

,(23) 
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we have 2 0c  . The general solution of equation (19) is therefore given by: 

                                      

2
2

0
1 1 1

20 0

( ) m B
t B

B t

Rq CR r R r
T r T c I

C R k R

 




 





                 
.                         (24) 

This solution satisfies the boundary condition ( ) 0dT

dr
t r R   yet the 2nd boundary condition  

0( )t r t mk T r R R q      gives: 

                   1

0 0 0
1 1 3 1 11

2 220

1 1

2

m

B B B B
t

t t t t

q
c

R R RC C C C
k I I I

R k k k k 

   
   

 
       
                      

,        (25) 

and at the end, we can write equation (24) as: 

    

2
2

0
1 1

20 0

0 0 0
1 1 3 1 11

2 220

( )
1 1

2

B
m

t
m

t B
B B B B B

t
t t t t

R CR r R r
q I

R k Rq
T r T

C R R RC C C C
k I I I

R k k k k

 



 




    
  





 

                
       
                      

. (26) 

Making use of the following parameter values used in theoretical biology [116]: 025 CeT  , 037 CBT  , 
33 Kg/m s  , 03850 J/Kg CBC  , 00.48 W/m Ctk  , 2 08.77 W/m  CHh  , 31085 W/mmq   and assuming that 

the radius of the spherical living cell is 3
0 10  mR  and that the typical radius of the tumor assumed to be a 

large cell is 32 10  mR   , e.g. lung cancer and lymphoma. [117,118], we obtain:  

               

2
2

0
1 1

20 0

0 0 0
1 1 3 1 11

2 220

155.121
2260.41

( ) 37.0939
155.121 155.121 155.1211

77.56
t

RR r R r
I

R R
T r

R R R
I I I

R

 



 



  





 

               
             

      

.     (27) 

This solution shows that the temperature of the living tissue is affected by the fractal dimension. As a first 

glance, we observe that temperatures are affected by the localization of the tumors and not by the surrounding 

healthy tissue. We plot in Figures 1-15 the temperature profile ( )tT r in the tumor tissue for different values of 

  and for different scales after choosing typical values of thermal properties: 
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Fig. 1: Variations of ( )tT r for 0.25  and for 0 0.002 mr      Fig. 2: Variations of ( )tT r for 0.25  and for 0 0.0002 mr   

   

        
Fig. 3: Variations of ( )tT r for 0.5  and for 0 0.0001 mr     Fig. 4: Variations of ( )tT r for 0.5  and for 0 0.0002 mr   

       
Fig. 5: Variations of ( )tT r for 0.5  and for 0 0.002 mr     Fig. 6: Variations of ( )tT r for 0.75  and for 0 0.0001 mr   
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Fig. 8: Variations of ( )tT r for 0.75  and for 0 0.0002 mr    Fig. 9: Variations of ( )tT r for 0.75  and for 0 0.002 mr   

 

     
Fig. 10: Variations of ( )tT r for 1  and for 0 0.0001 mr     Fig. 11: Variations of ( )tT r for 1  and for 0 0.0002 mr   

  

 
Fig. 12: Variations of ( )tT r for 1  and for 0 0.002 mr    Fig. 13: Comparing the variations of ( )tT r for different values of  and  

                                                                                                                                                    for 0 0.0001 mr   
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Fig. 14: Comparing the variations of ( )tT r for different values of   Fig. 15: Comparing the variations of ( )tT r for different values of                   

                                       and for 0 0.0002 mr                                                                     and for 0 0.002 mr   

 

We observe from Figures 1-12 that the temperature increases with the radial distance and the difference 

between the minimum and the maximum temperature is not too large. Yet, the problem is sensitive to the 

numerical values of   and the range of r as it is shown in Figures 13-15. The larger the value of  , the 

enhanced is the temperature. The range of the temperature lies between 38.28 C  and 38.58 C , hence the 

response temperature is larger than 37 C . We also observe in some cases such as Figures 3, 6 and 10 that the 

temperature increases in a quasi-oscillating way with the radial distance. The response temperature 

corresponding to the quasi-oscillating solution is maintained larger than the input temperature of the human 

body or the arterial blood. The effects of fractal dimensions and length tissues scales are related to the quasi-

oscillation of the tissue temperature, although the mean temperature is almost the same for some particular 

cases. These solutions reveal the oscillations of the temperature inside the tissue over time which are affected 

by fractal dimensions. In other words, these results show that, besides the effect of thermal conductivity of 

tissue and blood perfusion rate, fractal dimensions affect the tissue temperature. These solutions are practical 

to determine the required temperature to kill the malignant cells as well as optimizing the treatment 

procedure. 

 

The tumor surface temperature is not constant and varies in a certain range of temperature depending on the 

value of  and the rage of r . However, we observed that the range of 1
20   keeps the temperature of the 

body lower than 38.3 C . These analytical and numerical solutions can provide good information of fractal 

thermal behavior of living tissues [119,120]. Undoubtedly, in the present model, the human body and tumor 

are assumed to be consistent media with averaged physical parameters, therefore the numerical graphs are 

somewhat dissimilar from those obtained in real-world applications during hyperthermia treatment. It was 

observed that when tumor-bearing mice are subject to temperatures between 39 C and 43 C , there is an 

increase in tumor oxygenation up to one-day hours after heating. There is a correlation between the level of 

reoxygenation and the radiation sensitivity of the tumor as observed in studies with canine sarcomas and in 

clinical trials of patients with soft tissue sarcomas and breast cancer [115,121,122]. It is noteworthy that at 

very high temperature, if cells are kept at a temperature between 42 C  and 45 C , then proteins will be 

destroyed and, hence, cells will decease [111]. It is noteworthy at the end that the oscillations of body 

temperature may give an insight into control of breathing and the cardiovascular system [123]. 
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We can evaluate the heat conduction from equation (27) using the relation ( ) ( ) tq r k T    which gives: 

 

                        
0 0 0

1 1 3 1 11
2 220

1095 ( )
( ) ( )

155.121 155.121 155.1211
77.56

Q r
q r

R R R
I I I

R



    


             

      

,        (28) 

where  

                                             
 2

2
0

1 1
20 0 0

155.1211 2
( )

2

RR r R r
Q r I

R R R

 










                
 

 

                           

2
2

0 0
3 1 11

220 0 0

155.121 155.121
77.56

R RR r R r R r
I I

R R R

  

  





                                      

.   (29) 

 
The volumetric heat generation rate is given by ( )B B B B tq C T T   and for a blood density 

31060 Kg mB
  , we can estimate the variations of Bq with respect to the position of the tumor growth 

using equation (27). We plot in Figures 16-30 the variations of the regional heat source ( )Q r for two different 

values of   : 
 

    
Fig. 16: Variations of ( )Q r for 0.25  and for 0 0.0001 mr   Fig. 17: Variations of ( )Q r for 0.25  and for 0 0.0002 mr   

 

 
Fig. 18: Variations of ( )Q r for 0.25  and for 0 0.002 mr      Fig. 19: Variations of ( )Q r for 0.5  and for 0 0.0001 mr   
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Fig. 20: Variations of ( )Q r for 0.5  and for 0 0.0002 mr     Fig. 21: Variations of ( )Q r for 0.5  and for 0 0.002 mr   

 

 
Fig. 23: Variations of ( )Q r for 0.75  and for 0 0.0001 mr    Fig. 24: Variations of ( )Q r for 0.75  and for 0 0.0002 mr   

 

 
      Fig. 25: Variations of ( )Q r for 1  and for 0 0.0001 mr       Fig. 26: Variations of ( )Q r for 1  and for 0 0.0002 mr   
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Fig. 27: Variations of ( )Q r for 1  and for 0 0.002 mr            Fig. 28: Comparing the variations of ( )Q r for different values of    

                                                                                                                and for 0 0.0001 mr   

 
Fig. 29: Comparing the variations of ( )Q r for different values of   Fig. 30: Comparing the variations of ( )Q r for different values of  

                                           and for 0 0.0002 mr                                                               and for 0 0.002 mr   

 

We observe again that the value of 1
2

0   leads to negligible variations of ( )Q r as it is shown in Figures 28, 

29 and 30. Whereas for 1
2

1  , ( )Q r starts to decrease toward negative values and the heat conduction lies in 

the negative region. This shows that heat flux in the presence of a tumor growth moves from higher 

temperature regions to lower temperature regions. In particular cases as shown in Figures 18, 19, 20, 23, 24 

and 25, the variations of ( )Q r are quasi-oscillating. In general, in all living systems, the oscillations of heat 

flux and heat flow are driven by certain biochemical processes, e.g. phosphorylation and dephosphorylation 

reactions catalyzed by the cell-cycle oscillator [124]. This may have important impacts on the thermodynamic 

process of living cells. Understanding the underlying oscillatory phenomena is important in medicine in order 

to improve current methods and to develop new techniques including heat transfer at nanoscale levels which 

will allow to better study cell tissues and their viability and biological properties [125].  

 

4. Analytical Solution of the Time-Dependent Fractal Pennes Bioheat Transfer Equation  
In this section, we concentrate ourselves to the temperature distribution in tumor tissue based on the non 

steady-state bioheat transfer in the cell tissue in the presence of the tumor growth. We start by solving 

equation (18) which may be written as:  
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2 2 2

2
0

3t t tB B B m B
t

t t t

T T TC C T q CR r
T

k t R r R r k kr


  

       
            

, 

 

                                                             
2 2 2

2
0

3t t
t

T TR r
A BT

R r R rr




      
           

,                                 (30) 

 
where ( )B B m tA C T q k  and B tB C k . By letting ( , ) ( , )tQ r t A BT r t  , we can write equation (30) as: 
 

                                                           
2 2 2

2
0

3B

t

C Q R r Q Q
BQ

k t R r R rr


 

       
           

.                           (31) 

We can use the separation of variables method by letting ( , ) ( ) ( )Q r t F t G r which splits equation (31) into the 

following differential equations: 
 

                                                          
2 22

2
2

0

3
0B

t

CG G R r
G

r R r k Rr


 


     

         
,                           (32) 

and 

                                                                                    
2

0t

B

kF
F

t C





 


.                                                       (33) 

 
2 is here a separation of variable. The solution of equation (33) is given by 

2

0
k t Ct BF F e   with 

0 ( 0)F F t   whereas the solution of equation (32) is given by: 
  

                                                         
2

2023 1 1
2 0

( ) B

t

R C R r
G r c R r I

k R















          
.                     (34) 

 
The general solution using the boundary condition ( ) 0dG

dr r R   and 0( )t r mk G r R R q      gives: 
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



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       
                         

. (35) 

 
For very large time, it is observed that ( , ) 37.10 Ct B m BT r t T q C    which corresponds to a slight 

elevation in temperature. We plot in figures 31-35 the 3D variations of the temperature for different values of 

 and for different scales for an average tissue density of 31100 Kg m   0 ( 0) 1F F t    and 2 1  : 
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                       Fig.31: Plot of ( , )tT r t for 0.75                                                                Fig.32: Plot of ( , )tT r t for 0.5   

                   
                             Fig.33: Plot of ( , )tT r t for 25                             Fig.34: Plot of ( , )tT r t for 0.25   and for 0 0.0002 mr   

 
Fig.35: Plot of ( , )tT r t for 0.25   and for 0 0.002 mr   

 

We observe that the variations of the temperature in the presence of a tumor growth are affected by fractal 

dimensions and the scales used even though the variations are slightly comparable. The temperature is subject 

to a decreasing state in the presence of the tumor growth. For 1
2

0   , the temperature is decreasing but is 

subject to small fluctuations with time as it is obvious from Figures 33 and 35 for two different length scales. 
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These are roughly estimates of the variations of temperature, yet several constraints must be used to obtain 

accurate data. Nevertheless, these results prove that fractal dimensions, the radius of the tumor growth and the 

dimension of the living cell tissue are all important parameters in bioheat transfer analysis. Undeniably, in the 

case of a moderately shallow tumour a boundary condition modelling the skin-environment interface is 

required to solve the fractal Pennes bioheat equation. Nevertheless, LOSA provides an effective means for 

solving fractal bio-heat transfer in soft biological tissue and may be suited for real-time applications. 

 

The previous approach may be extended to study the fractal thermal wave model of Pennes bioheat equation 

since in general the biological tissues are the materials with non-homogeneous inner structure and hence the 

Cattaneo-Vernotte hyperbolic heat equation (CVHEH) should be used [126,127]. This equation was explored 

in literature through dissimilar frameworks [128-131]. The simplest form of the fractal CVHEH is: 
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   ,(36) 

 
where   is the relaxation time, v a  is the velocity of the thermal wave with a being the thermal 

diffusivity. This equation may be written as: 
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,      (37) 

 
and its solution is obtained by letting ( , ) ( , )tP r t E UT r t   where ( )t B m BE k T q C  and t BU k C . This 

converts easily equation (37) to:  
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The separation of variables method ( , ) ( ) ( )P r t H t K r  splits equation (38) into the following differential 

equations: 
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and 
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2 is another separation of variable. It is easy to verify that the general solution is given by: 
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where K is a constant of integration which may be derived from suitable boundary conditions. We plot in the 

Figures 36-39 the variations of ( , )tT r t for different scales ranges after fixing the relaxation time to 

10 s  and evaluating the integration constant for fixed parameters values used in theoretical biology [116]: 
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                           Fig.36: Plot of ( , )tT r t for 0.75                                     Fig.37: Plot of ( , )tT r t for 0.75  for large range of time 

                
            Fig.38: Plot of ( , )tT r t for 0.25                                                   Fig.39: Plot of ( , )tT r t for 1    

 

These plots illustrate the decaying behavior of ( , )tT r t . The analytical solution can predict therefore the 

decaying temperature in the living tissue for small range of time and its oscillatory behavior for large range of 

time. This result is in agreement with several medical studies [132,133]. The amplitude of oscillations is not 

altered for large period of time and the temperature of living tissue oscillates between 38 C and 37 C in the 

presence of the tumor growth for 1
2 1   whereas the range of the temperature oscillations is within 37 C for 

low length scales. The case 1
2   leads to a steady-state temperature as it is obvious from Figure 38. 

 

One may extend the LOSA by replacing ( )
1

kc by: 
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,                                (42) 

 
with 01R  and 02R  are characteristic lengths [134]. This generalization may be used to differentiate between 

two fractal media having the same fractal dimension but different density distributions, e.g. localization of 

two tumors growths. In that case, ( )
12: k

r rr c 
        and the fractal bioheat equation takes the following 

form: 
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 . (43) 

The steady-state Pennes fractal equation takes then the form: 
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Following the arguments of [135], this generalization is practical to study heat dissipative processes, e.g. heat 

dissipation by the blood flow besides others biological effects [136-140]. This will be analyzed in a future 

work.  

 

5. Conclusions and Perspectives  
In this study, we have discussed the implications of the concept of the "product-like fractal measure" 

introduced by Li and Ostoja-Starzewski (LOSA) in bioheat transfer theory which is widely used in medicine, 

in particular thermal treatments of cancer. This approach is in fact characterized by fractal dimensions and a 

modified gradient operator which depends on a length R  representing the radius of the tumor and another 

length 0R  representing the spherical living tissue radius. Such a methodology is new and was not discussed to 

the best of our knowledge in literature. Throughout this study, we have assumed that the typical radius of the 

tumor is large.  

 

The fractal kinetic equations lead to a fractal formulation of the Pennes bioheat transfer equation. The 

solution of one-dimensional steady-state fractal Pennes bioheat transfer equation has been solved, and the 

corresponding equation has been solved analytically and numerically. The analytical solutions have been 

explored after taking into account the boundary conditions of 2nd-kind. We have discussed both the steady 

and unsteady equations and we have derive their corresponding solutions after assuming a specific 

heating/cooling with a constant heat flux analogous to the metabolic heat generation in the tissue. In both 

cases, it was observed that the solutions, i.e. the response temperatures are affected by fractal dimensions, the 

radius of the tumor growth and the dimension of the living cell tissue. Our study confirms that realistic 

estimates of the temperature and fractal thermal behavior of living tissues are affected by the numerical value 

of  . The quasi-oscillations of the heat flux obtained throughout this study may have also an effect on body 

temperature and vice versa and confirm theoretically predicted results. So, we can say that fractal dimensions 

play a crucial role in understanding of thermal and biomechanical properties of human tissues and physics 

that governs biological processes. The accuracy of fractal thermal modeling of human tissue greatly depends 

on the numerical value of  . 

 

We have also discussed the Cattaneo-Vernotte hyperbolic heat equation. The solutions obtained indicate the 

presence of a decaying temperature for small length scales and short period of time and oscillatory variations 
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for small length scales and long period of time. These give rise to an oscillating heat flux with constant 

amplitude which is affected by the value of the relaxation time, the numerical value of the fractal dimension, 

the radius of the tumor growth and the dimension of the living cell tissue. The amplitude of oscillations is not 

altered for large period of time: in particular, for 1
2 1  , the temperature of living tissues in the presence of 

a tumor growth decreases with time till it reaches the temperature of around 37 C . For 1
20   , as steady 

state solution is obtained. 

 

The clinical application of LOSA could be demonstrated using an assortment of modalities for thermal 

treatment. We know that thermal therapy uses dissimilar energy sources to produce heat in order to cause 

thermal damage to choosy targets such as tumors/cancers. This is achieved by having good information about 

tissues temperatures for tumor treatment in order not to destroy the nearby tissue when using adequate 

thermal energy.   

 

We conclude that, LOSA in general, holds motivating features and may play an important role in controlling 

temperature distribution in living tissue in the presence of tumor growth. It will be of interest to extend this 

work for different boundary conditions, e.g. sinusoidal heat flux boundary condition which are practical at the 

skin surface. It is also inspiring to extend our approach by implementing nonlocal effects which are important 

for biological and medical systems where numerous cells effects may exist on the cellular level. Moreover, it 

will of interest to extend LOSA to study the fractal heat propagation equations in tissue to optimize outcomes 

of thermal ablative treatments and to analyze the corresponding quantitative results. These will be the main 

goals of our future work.  
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