rsos180158_si_001.rar (1.2 MB)

original data and descriptions from Inhibition mechanism of Ca2+, Mg2+ and Fe3+ in fine cassiterite flotation using octanohydroxamic acid

Download (1.2 MB)
posted on 27.07.2018 by Liuyi Ren, Hang Qiu, Wenqing Qin, Ming Zhang, Yubiao Li, Penggang Wei
The existence of metal ions should not be ignored in both hydrometallurgy and flotation. In this study, the effects of Ca2+, Mg2+ and Fe3+ on the flotation performance of cassiterite using octanohydroxamic acid (OHA) as the collector were investigated by micro-flotation tests, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle, zeta (ζ) potential measurements and atomic force microscopy (AFM) imaging. The results of the flotation and contact angle experiments showed that the addition of Ca2+, Mg2+ and Fe3+ significantly decreased both the recovery and contact angle of cassiterite with pH in the range from 6.0 to 12.0 in the presence of OHA collector. ζ-Potential measurements, solution chemistry analysis and FTIR measurements indicated that the flotation recovery of the cassiterite declined due to the CaOH+, MgOH+ and Fe(OH)3 sites on the cassiterite surface. XPS results indicated that the chemisorption of OHA on the cassiterite surface and its adsorption combined with calcium ions’ effects finally changed the chemical properties of the cassiterite surface. The AFM images also revealed that new species Fe(OH)3 of Fe3+ formed and adsorbed on the cassiterite surface at pH 9.0. The adsorption of Fe(OH)3 reduced the adsorption of OHA on the cassiterite surface, thus the hydrophobicity of cassiterite was deteriorated.