The Royal Society
Browse

sorry, we can't preview this file

rsos172253_si_006.xlsx (15.41 kB)

Zhu_ tables _ESM 6.xlsx from Analysis of the regulation networks in grapevine reveals response to waterlogging stress and candidate gene-marker selection for damage severity

Download (15.41 kB)
dataset
posted on 2018-06-08, 06:45 authored by Xudong Zhu, Xiaopeng Li, Songtao Jiu, Kekun Zhang, Chen Wang, Jinggui Fang
Owing to the climate change impacts, waterlogging is one of the most hazardous abiotic stresses to crops, which also can result in a serious reduction in the quantity and quality of grape berry and wine production during the rainy season. Therefore, the exploration of the mechanism of grape response to waterlogging is necessary, for which the analysis of the regulation networks' response to waterlogging stress in grapevine leaves at the transcriptomic level was carried out. In this study, 12 634 genes were detected in both waterlogging stress and control grapevine plants, out of which 6837 genes were differentially expressed. A comparative analysis revealed that genes functioning in the antioxidant system, glycolysis and fermentation pathway, chlorophyll metabolism, amino acid metabolism and hormones were activated to reduce injury to grapes under the waterlogging stress. Meanwhile, genes encoding class-2 non-symbiotic haemoglobin were determined as important in waterlogging acclimation. Additionally, the expression variations of three marker genes were found to be informative and can be used to predict the viability of the grapevines subjected to waterlogging. This research not only probes the molecular mechanism underlying grapevine waterlogging tolerance but also puts forward an idea about the application of gene expression information to practical management.

History

Usage metrics

    Royal Society Open Science

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC