The Royal Society
Browse
rsos200385_si_007.xlsx (138.71 kB)

Prof A.Maleki_Figure 4_ESM from Green and efficient three-component synthesis of 4H-pyran catalysed by CuFe2O4@starch as a magnetically recyclable bionanocatalyst

Download (138.71 kB)
dataset
posted on 2020-06-24, 16:45 authored by Maryam Kamalzare, Mohammad Bayat, Ali Maleki
The development of simple, practical and inexpensive catalysis systems using natural materials is one of the main goals of pharmaceutical chemistry as well as green chemistry. Owing to the ability of easy separation of nanocatalyst, those goals could be approached by applying heterogeneous bionanocatalyst in combination with magnetic nanoparticles. Starch is one of the most abundant natural polymers; therefore, preparing bionanocatalyst from starch is very valuable as starch is largely available and inexpensive. An ecologically benign and efficacious heterogeneous nanocatalyst was prepared based on a biopolymer, and its attributes and morphology were specified by using Fourier transform infrared spectra, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), thermal analysis and vibrating sample magnetometer measurements; followed by studying catalytic behaviour of bionanocomposite in a multicomponent reaction to synthesize of 4H-pyran derivatives. 4H-pyran is extremely valuable in pharmaceutical chemistry, and the development of methods for synthesis of different derivatives of 4H-pyran is momentous. Revealing environmentally benign nature, mild condition, easy work-up, low cost and non-toxicity are some of the advantages of this protocol. Besides, the bionanocomposite was recovered using an external magnetic bar and could be re-used at least six times with no further decrease in its catalytic activity.

History

Usage metrics

    Royal Society Open Science

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC