Supporting information from Photodegradation of naphthalene over Fe3O4 under visible light irradiation

Using FeCl3 and FeSO4 as precursors, Fe3O4 were prepared by co-precipitation method via FeCl3 and FeSO4 aqueous solutions successively added in NaOH solution. The sample was proved by X-ray powder diffraction, transmission electron microscope, ultraviolet–visible spectrophotometry and magnetic measurement. The results showed that the prepared Fe3O4 material was composed of an average diameter of about 15 nm particles and nano rods with well-crystallized magnetite and stronger superparamagnetic, getting a saturation magnetization of 49.5 emu g−1. This Fe3O4 material was found to be an effective catalyst for photodegradation of naphthalene with or without H2O2 under visible light irradiation, getting 81.1% and 74.3% degradation rate in these two cases, respectively. The degradation pathway in the absence and presence of H2O2 was analysed via measurement of the distribution of degradation products by GC-MS and adsorption of reactants on the surface of the catalyst by in situ DRIFTS spectra.