The Royal Society
Browse
rspb20190316_si_001.pdf (1.87 MB)

Supplementary figures S1-S5 from Narrow habitat breadth and late-summer emergence increases extinction vulnerability in Central European bees

Download (1.87 MB)
journal contribution
posted on 2019-03-14, 11:38 authored by Michaela M. Hofmann, Constantin M. Zohner, Susanne S. Renner
Evaluating intrinsic and extrinsic traits that predispose species to local extinction is important for targeting conservation efforts. Among the species of special concern in Europe are bees, which, along with butterflies, are the best monitored insects. Bees are most species-rich in Mediterranean-type climates with short winters, warm springs, and dry summers. In Central Europe, climate warming per se is, therefore, expected to benefit most bee species, while pesticides and the loss of habitats and plant diversity should constitute threats. Here, we use the bee fauna of Germany, which has been monitored for Red Lists for over 40 years, to analyse the effects of habitat breadth, pollen specialization, body size, nesting sites, sociality, duration of flight activity, and time of emergence during the season. We tested each factor's predictive power against changes in commonness and Red List status, using phylogenetically informed hierarchical Bayesian (HB) models. Extinction vulnerability is strongly increased in bees flying in late summer, with a statistical model that included flight time, habitat preference, and duration of activity correctly predicting the vulnerability status of 85% of the species. Conversely, spring emergence and occurrence in urban areas each reduce vulnerability, pointing to intensive land use especially harming summer-active bees, with the combination of these factors currently shifting Germany's bee diversity towards warm-adapted, spring-flying, city-dwelling species.

History

Usage metrics

    Proceedings of the Royal Society B: Biological Sciences

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC