The Royal Society
Browse
rsif20160896_si_001.pdf (1.9 MB)

Supplementary Data Fusion MS from Multi-step excitation energy transfer engineered in genetic fusions of natural and synthetic light-harvesting proteins

Download (1.9 MB)
Version 2 2017-02-07, 08:26
Version 1 2017-01-27, 11:08
journal contribution
posted on 2017-02-07, 08:26 authored by Joshua A. Mancini, Goutham Kodali, Jianbing Jiang, Kanumuri Ramesh Reddy, Jonathan S. Lindsey, Donald A. Bryant, P. Leslie Dutton, Christopher C. Moser
Synthetic proteins designed and constructed from first-principles with minimal reference to the sequence of any natural protein have proven robust and extraordinarily adaptable for engineering a range of functions. Here for the first time we describe expression and genetic fusion of a natural photosynthetic light-harvesting subunit with a synthetic protein designed for light energy capture and multi-step transfer. We demonstrate excitation energy transfer from the bilin of the CpcA subunit (phycocyanin α subunit) of the cyanobacterial photosynthetic light-harvesting phycobilisome to synthetic four-helix-bundle proteins accommodating sites that specifically bind a variety of selected photoactive tetrapyrroles positioned to enhance energy transfer by relay. The examination of combinations of different bilin, chlorin and bacteriochlorin cofactors has led to identification of the preconditions for directing energy from the bilin light-harvesting antenna into synthetic protein-cofactor constructs that can be customized for light-activated chemistry in the cell.

History

Usage metrics

    Journal of the Royal Society Interface

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC