The Royal Society
Browse
rsif20190354_si_001.pdf (1.07 MB)

Supp. Material and Supp.Figures S1 to S5 from Geometric coupling of helicoidal ramps and curvature-inducing proteins in organelle membranes

Download (1.07 MB)
journal contribution
posted on 2019-08-21, 06:36 authored by Morgan Chabanon, Padmini Rangamani
Cellular membranes display an incredibly diverse range of shapes, both in the plasma membrane and at membrane bound organelles. These morphologies are intricately related to cellular functions, enabling and regulating fundamental membrane processes. However, the biophysical mechanisms at the origin of these complex geometries are not fully understood from the standpoint of membrane–protein coupling. In this study, we focused on a minimal model of helicoidal ramps representative of specialized endoplasmic reticulum compartments. Given a helicoidal membrane geometry, we asked what is the distribution of spontaneous curvature required to maintain this shape at mechanical equilibrium? Based on the Helfrich energy of elastic membranes with spontaneous curvature, we derived the shape equation for minimal surfaces, and applied it to helicoids. We showed the existence of switches in the sign of the spontaneous curvature associated with geometric variations of the membrane structures. Furthermore, for a prescribed gradient of spontaneous curvature along the exterior boundaries, we identified configurations of the helicoidal ramps that are confined between two infinitely large energy barriers. Overall our results suggest possible mechanisms for geometric control of helicoidal ramps in membrane organelles based on curvature-inducing proteins.

History

Usage metrics

    Journal of the Royal Society Interface

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC