The Royal Society
Browse
rsos172021_si_001.rar (864.23 kB)

Attached to the submitted files in the name "Data" from Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for organic dye uptake efficiency

Download (864.23 kB)
dataset
posted on 2018-03-01, 13:38 authored by Rania E. Morsi, Rasha S. Mohamed
A series of ordered mesoporous silica such as MCM-41, SBA-3 and SBA-15, in addition to silica micro- (SM) and nano- (SN) mesoporous particles, were prepared. The preparation conditions were found to greatly influence the physical-surface properties including morphological structure, porosity, particle size, aggregate average size, surface area, pore size, pore volume and zeta potential of the prepared silica, while the chemical structure, predicted from FT-IR spectra, and the diffraction patterns, predicted from wide-angle X-ray diffraction spectra, were identical. Surface areas of approximately 1500, 1027, 600, 552 and 317 m2 g−1, pore volumes of 0.93, 0.56, 0.82, 0.72 and 0.5 cm3 g−1, radii of 2.48, 2.2, 5.66, 6.6 and 8.98 nm, average aggregate sizes of 56, 65.4, 220.9, 73, 61.1 and 261 nm and zeta potential values of −32.8, −46.1, −26.3, −31.4 and −25.9 mV were obtained for MCM-41, SBA-3, SBA-15, SN and SM, respectively. Methylene blue dye uptake capacity of the prepared silica types was investigated using the batch technique and in addition, the most effective material was further studied by the column flow system. The kinetics and isotherms of the uptake process were studied. The morphological structure, surface area, pore radius and zeta potential values were the most correlated factors.

History

Usage metrics

    Royal Society Open Science

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC